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Conductance of DNA molecules: Effects of decoherence and bonding
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The influence of decoherence and bonding on the linear conductance of single double-stranded DNA mol-
ecules is examined by fitting a phenomenological statistical model developed recently [M. Zilly, O. Ujsaghy,
and D. E. Wolf, Eur. Phys. J. B 68, 237 (2009)] to experimental results. The DNA molecule itself is described
by a tight-binding ladder model with parameters obtained from published ab initio calculations [K. Senthilku-
mar, F. C. Grozema, C. F. Guerra, F. M. Bickelhaupt, F. D. Lewis, Y. A. Berlin, M. A. Ratner, and L. D. A.
Siebbeles, J. Am. Chem. Soc. 127, 14894 (2005)]. The good agreement with the experiments on sequence and
length dependence gives a hint on the nature of conduction in DNA and at the same time provides a crucial test

of the model.
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I. INTRODUCTION

Motivated by molecular electronics and by the possibility
to read out chemical and biological information electroni-
cally, transport through single double-stranded DNA mol-
ecules is a focus of current research in nanoscience. The
experimental situation is not particularly clear. After the
early investigations,' in the last 6 years increasing consensus
emerged that DNA double strands with 8—26 base pairs are
conducting. However, this conclusion may be misleading, as
it depends on the chemical potential of the contacts, on the
temperature, and on the coupling of DNA to the environ-
ment. The experiments are performed either in water> or in
the dry state.>® Moreover, all experiments show sequence-
dependent conductance, which increases the more the (GC)
content in the sample molecule dominates over the (AT) con-
tent. Sometimes ohmic behavior is reported, sometimes one
finds an exponential decrease which is attributed to coherent
tunneling. The change from coherent to ohmic behavior is
usually attributed to the effect of decoherence caused by the
water (e.g., Refs. 7-9), vibrational degrees of freedom,'® or
dynamical movement of the DNA bases.!! Most of the theo-
retical studies perform model calculations,'? but some of
them present hybrid methods combining ab initio and
molecular-dynamics studies,® sometimes also in combination
with model calculations.!!

The experiments clearly show that both the way, DNA is
bonded, as well as the environment has an influence on the
conductance. Here we present a calculation taking into ac-
count the effects of decoherence and bonding by extending a
recently introduced phenomenological model.!>!* It was
originally developed for linear systems and adapting it to the
quasilinear transport in DNA provides additional justification
of the model.

As DNA Hamiltonian we use a realistic tight-binding
model (the extended ladder model) based on ab initio
calculations.”>"!7 We investigate several sequences, for
which experimental values for the conductance are known, in
order to assess, how well they can be fitted by our model
without changing the microscopic energy values, but just
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adapting the four parameters u and I' describing the cou-
pling to the electrodes, and p and 7 describing the effect of
decoherence (see Secs. IIT and IV).

The paper is organized as follows. In Sec. II we present
the extended ladder model describing the double-stranded
DNA. Section III is devoted to modeling the bonding to the
electrodes according to the experimental situation. In Sec. IV
we extend the statistical model for decoherence such that it
becomes applicable to DNA. In Sec. V we compare our re-
sults to the experiments”* and finally, we give our conclu-
sions in Sec. VL.

II. EXTENDED LADDER MODEL OF DNA

The linear chain tight-binding model,'?> where each site
corresponds to a base pair, is widely used in the literature to
describe DNA. In some works also the backbone effects
caused by the complementary strand and the sugar/phosphate
mantle are taken into account (fishbone model).'?

However, in order to account for arbitrary base sequences
considering the correct base pairing, the so-called ladder
model'>!3 is more appropriate. It consists of two coupled
tight-binding chains corresponding to the two strands and
each site represents a single base. There are calculations
where backbone effects (here only due to the sugar/
phosphate mantle) are considered in the ladder model, as
well.'? Since, according to ab initio'>"'7 calculations the di-
agonal interstrand transfer matrix elements can be more rel-
evant than the intrastrand coupling, we will use the extended
ladder model of DNA (Refs. 15-17) sketched in Fig. 1.

FIG. 1. (Color online) The extended ladder model for DNA
double strands (Refs. 15-17).
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TABLE 1. The on-site energies and base pair couplings (in eV). On-site energies are averages of the
values calculated by DFT (Ref. 15). They correspond to the HOMO orbitals at the respective bases.

€G €A €c

€r Uele s

8.178 8.631 9.722

9.464 -0.055 -0.047

The corresponding Hamiltonian describing a double-
stranded DNA that is N base pairs long is

+
ti,mnci,mci,n

H= 2 2 Si,mczmci,m + 2

=1 | m=1,2 mn=1,2:m#n

+ E ti,i+1,mn(czmci+1,n+H'C') ) (1)

m,n=1,2

where CZm creates a hole on strand m at the ith base pair with
on-site energy &;,,. t;,, and t; ;1 ,,, are the base pair cou-
plings and the hopping amplitudes between two bases of
neighboring base pairs, respectively. The parameters used in
the calculations for the on-site energies and the base pair
couplings are listed in Table I. According to Ref. 15, the
on-site energies calculated by density-functional theory
(DFT) depend on the flanking nucleobases so that 16 differ-
ent values were determined. For € they vary between 7.890
and 8.407 eV, to give an idea. Also structural rearrangement
(e.g., by shearing or twisting) of the DNA double strands
causes shifts in the on-site energies of up to 1 eV.!° Here, we
want to propose a universal model, which can predict con-
ductances for any sequence of base pairs. Within the model

TABLE II. Hopping parameters (in eV) for the extended ladder
model, Fig. 1 (Ref. 15).

(a) tsrxy.3 =ty _yx.s5'

Y
X G A C T
G 0.053 -0.077 -0.114 0.141
A -0.010 -0.004 0.042 -0.063
C 0.009 -0.002 0.022 —0.055
T 0.018 -0.031 -0.028 0.180
(b) 151 xy.5/
G 0.012 -0.013 0.002 -0.009
A -0.013 0.031 -0.001 0.007
C 0.002 -0.001 0.001 0.0003
T -0.009 0.007 0.0003 0.001
(¢) t3rxy-3r
G -0.032 -0.011 0.022 -0.014
A -0.011 0.049 0.017 -0.007
C 0.022 0.017 0.010 -0.004
T -0.014 -0.007 -0.004 0.006

class, Eq. (1), a single value for the on-site energy of a
nucleobase should be used. We simply take the average of
the 16 values given in Ref. 15 for each nucleobase.

The hopping parameters (cf. Fig. 1) used in the calcula-
tion are listed in Table II. We use the single-strand notation,
listing only the sequence of a single strand (the other strand
is determined due to the unique base pairing). Because of the
directionality of the DNA strands, f5/_yy.3 # 3/ xy.5/
=t5_yx.3» for X#Y. However, due to symmetry fs/ yy s
=t57_yx_57 and t3r_Xy_3r=t3r_yx_3r fOI' all X,Y

Using the parameters given in Tables I and II the density
of states for holes of an infinite DNA double strand is shown
in Fig. 2. We can see two bands, one for holes with an energy
around 8.2 eV and one around 9.7 eV. Each band is split into
two subbands of width =0.04 eV. We prefer to describe the
bands in terms of electrons in the following: the upper band
at an energy —8.2 eV below the vacuum level and the lower
one at —9.7 eV are both filled with electrons for an isolated
neutral molecule.

III. BONDING MODEL

Our aim is to examine the effect of the environment (de-
coherence) on the linear conductance of single double-
stranded DNA molecules. We focus on the experiments in
Refs. 2—4, where each gold electrode is coupled to a G base
on the 3’ end via a thiol group. We model this as shown in
Fig. 3, assuming wideband limit contacts attached only to the
3’ ends of the strands. The self-energies due to the left (L)
and right (R) contacts are 2N X 2N matrices, where all matrix
elements are zero apart from the diagonal elements corre-
sponding to (i,m)=(1,2) on the left and (i,m)=(N,1) on the
right. These matrix elements are equal to the imaginary num-
ber —iI"/2. We will consider the case of weak coupling to the
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FIG. 2. (Color online) Density of states for holes, for
5'-(CG),-3".
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FIG. 3. (Color online) Extended ladder model, where only the
3" ends of the strands are attached to the gold contacts via thiol-
linker like in the experiments of Refs. 2—4.

electrodes, by choosing I'=0.003 eV. This is of the same
order of magnitude as the weakest hopping parameters in the
DNA molecule.

The conductance of the DNA fragment depends also on
the Fermi level of the contacts in relation to the DNA bands.
Already a relative shift of 0.01 eV can significantly change
the conductance. As the known values are hardly that reli-
able, we consider the chemical potential u of the contacts as
a fit parameter in the following. It must be kept in mind that
u denotes the chemical potential for holes. The one for elec-
trons is given by w.,=-—u. We concentrate on values of
within the immediate neighborhood of the uppermost occu-
pied band, i.e., around —8.18 eV. Hence we describe the
bonding of the DNA fragment by two fit parameters, the
self-energy I' and the chemical potential .

In Secs. IV and V we will calculate, how the linear con-
ductance of the experimentally investigated sequences de-
pends on these two bonding parameters. They should be the
same for all sequences in Refs. 2-4, because the bonding
was done the same way in all samples. We are going to
use the recently developed phenomenological statistical
method,'>!* which takes decoherence into account by two
further fit parameters.

IV. STATISTICAL MODEL FOR THE DECOHERENCE

The model is based on a different physical picture com-
pared to other phenomenological descriptions of decoher-
ence [like the method of fictitious reservoirs (Biittiker
probes) (Ref. 20) or the method of Ref. 21]. Whereas there
decoherence is continuously present in the sample, in our
model it occurs only at stochastically distributed decoher-
ence regions, where phase information gets completely lost.

We assume that decoherence can be described by local,
stochastic events that couple a base pair (or part of it) to the
environment. At those positions, phase coherence will be lost
in both strands due to the interstrand couplings. In such a
description the sequence consists of coherent sections sepa-
rated by base pairs, on which decoherence events take place.
The positions of the decoherence base pairs are chosen at
random with a probability p giving rise to a particular deco-
herence configuration. The final results will be averaged over
the different decoherence configurations. The average deco-
herence length is a/p,'® where a=3.4 A is the distance be-
tween base pairs. p is the first of the two parameters charac-
terizing decoherence in the model.

The coupling of a base pair to the environment implies
that the local energy levels of the two bases will be broad-
ened. In our model this broadening will be described by a
parameter 7. As we furthermore assume that coherence is
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FIG. 4. (Color online) The transmission function of a coherent
double-strand DNA molecule segment is calculated from the Hamil-
tonian given in Sec. II and the self-energies describing the connec-
tion to the decoherence base pairs at its ends (shaded).

completely destroyed on these base pairs, it makes sense to
attribute a local energy distribution function to each decoher-
ence base pair, which in general will differ from the Fermi
distribution. Instead it will be a nonequilibrium distribution
that emerges from the Fermi distributions f; (E) and fx(E) in
the left, respectively, the right contact via the transmission of
charge carriers through the coherent sections. We expect 7 to
be larger than the broadening ~I'/2 due to the electrodes
and of the same order of magnitude as the width of the sub-
bands in Fig. 2 (=0.04 eV).

The (n—1)st and the nth decoherence base pair can be
regarded as “contacts” for the coherent section in between.
The electrical current (and hence the conductance) can then
be calculated according to the Landauer formula from the
transmission function 7,_; ,(E) of the coherent section and
the energy distribution functions f,_,(E) and f,(E) at its
boundaries,

I= Zflf dETn—ln(E)[fn—l(E) _fn(E)] (2)

The transmission functions for the coherent sections are
calculated by applying the nonequilibrium Green’s-function
method?? (see Fig. 4),

Tyuet(E) =4 TH[G,y iy (E)Im 3, (E)G,

n,n+1

(E)Im X,(E)],
A3)

where
Gn,n+1(E) = [E - Hn,n+1 - 2n(E) - 2n+1(E):|_1 (4)

is the Green’s function of the segment between decoherence
base pairs n and n+1. It is a matrix of dimension 2j, X 2j,,,
where j, denotes the number of base pairs in the segment.
The self-energy is a product of matrices

S(E) = 71, g(E) T (5)
(2j,X27,)  (2,X2) (2X2) (2X2j,)

with the dimensions given in the second line. 7, is the cou-
pling matrix connecting the segment to the decoherence base
pair n (see Fig. 4). Its matrix elements can be identified from
Fig. 1. The Green’s function of the decoherence base pair n
contains the corresponding Hamiltonian H,, and the coupling
to the environment described in the simplest case by a con-
stant imaginary self-energy —i# (times the 2 X 2 unit matrix),

gE)=[E-H,+in]™". (6)
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As we assume complete loss of phase information at the
decoherence regions, one can write down master equations
for the distribution functions, where the transfer rate of
charge carriers between neighboring decoherence regions is
proportional to the transmission function.'® In the stationary
state one obtains the following system of coupled linear
equations:

Tn—l,n(E)[fn—l(E) _fn(E)] = Tn,n+l(E)[fn(E) _fn+l(E)]~
(7)
According to Eq. (2), Eq. (7) implies current conservation.
They can be solved analytically,'? using the boundary condi-
tions fo(E)=f1.(E) and fy;,,(E)=fr(E), where M denotes the

number of decoherence base pairs. Inserting the solution into
Eq. (2) (e.g., for n=M) gives the current

M

-1
1=2§ f dE(le ) [ALE) -f(B)]. 8
n=0 £ n,n+l

This leads to the linear conductance

G=Gode<§ 1 )_1<—%‘1

n=0 * n.n+l1 oE

) , )

where G0=2eh—2 is the conductance quantum (for the two spin
channels), feq is the Fermi function, and u is the equilibrium
chemical potential of the contacts. For the results presented
in the following, this expression has been averaged over
typically 2000 independent decoherence configurations.

It is worth noting that temperature enters the result via
several parameters. First, there is the explicit temperature
dependence of the Fermi function. Moreover, the chemical
potential u and the decoherence parameters p and 7 implic-
itly depend on temperature.

Given the microscopic energy values in Tables I and II
and the temperature, the model has four parameters. Two of
them, p and I', describe the coupling to the contacts. The
other two are the decoherence parameters, p and 7. As they
describe a coupling to the environment, they may differ for
dry and wet DNA, and they may also depend on the type of
base pair.

V. RESULTS

In this section we present our results on the linear con-
ductance for the sequences investigated experimentally in
Refs. 2—4. The experimental data consist of conductance val-
ues for 5'-(CG),,-3" samples>* with four different lengths
[numbers of base pairs (nBPs) are 2m=8, 10, 12, and 14],
and for 5'-CGCG-(A),(T),-CGCG-3" samples®?® with three
different lengths (nBPs are 8+2n=8, 10, and 12), where n
=0 corresponds to the shortest 5'-(CG),,_4-3" sample.

We took the effect of finite temperature into account only
in the Fermi functions of the electrodes. Since the experi-
ments were performed at room temperature, we fixed kzT
=0.0255 eV. It is interesting to note, that in Ref. 4 experi-
mentally unobservable temperature dependence was reported
in the temperature range from 5 to 65 °C.

PHYSICAL REVIEW B 82, 125125 (2010)
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FIG. 5. (Color online) Calculated conductances for 5'-(CG),,-3’
versus the inverse of the nBP 2m for parameter combinations (u
=8.07 eV, 7=0.05 eV) (red), (u=8.18 eV, 5=1.0 eV) (blue),
(u=8.25 eV, 7=0.05 eV) (green), and (u=8.26 eV, =0.05 eV)
(orange). I'=0.003 eV, p=0.5, and kzT=0.0255 eV are the same
for all curves. The experimental values (Refs. 2 and 4) are shown
by M together with the error bars.

It is a hard task to investigate the whole four-dimensional
parameter space of the model presented in Sec. IV. One
needs to have reasonable guesses for the parameter values I,
M, p, and 7. It turns out that the chemical potential w of the
electrodes is the most crucial parameter. Here we present
data for four values, u=8.07 eV (u, slightly above the up-
per band), u=8.18 eV (u, within the upper band), and u
=8.25 eV, respectively, ©u=8.26 eV (both u slightly below
the upper band of the isolated molecule). The coupling I' to
the electrodes is assumed to be of the same order of magni-
tude as the weakest hopping parameters in the DNA mol-
ecule. It is fixed to the value I'=0.003 eV in all figures apart
from the last one. As explained in Sec. IV, we regard values
of 7 slightly larger than 0.04 eV (but still of the same order
of magnitude) as reasonable. Finally, we guess that at room
temperature a hole cannot travel ballistically further than per-
haps two base pairs. Thus we choose p=0.5. These guesses
will be confirmed by the results.

Figure 5 shows the measured conductances of four mol-
ecules of the type 5'-(CG),,-3’, plotted versus the inverse of
their length L=2m (nBP).>* Within the experimental error
bars we obtained four excellent fits by keeping p=0.5 and
I'=0.003 eV fixed and optimizing # for each value of the
chemical potential. The statistical errors of the calculated
conductances are not shown in this figure for the sake of
clarity. They are always less than half of the experimental
errors. In the cases, where the chemical potential lies outside
the band, the value #=0.05 eV led to good fits for all four
data points. However, if the chemical potential lies inside the
band, a good fit requires a value of =1 eV, which seems
unreasonably large.

Plotting the conductance as a function of inverse length
suggests ohmic behavior. This is misleading, though, because
a linear extrapolation would lead to vanishing conductance at
a finite length. In Figs. 6—8 we plot the same data in a semi-
logarithmic way, showing that an exponential length depen-
dence cannot be ruled out.

These figures also show
data points, which

two more experimental
belong to molecules
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FIG. 6. (Color online) Conductance data for 5’-(CG),,-3" (OJ)
(Refs. 2 and 4) and 5'-CGCG-(A),(T),-CGCG-3" (<) (Refs. 2 and
3) plotted semilogarithmically versus the nBP, 2m, respectively, 8
+2n. For a value of ©=8.07 eV, our model fits both data sets,
using the same parameters I'=0.003 eV, p=0.5, and 7=0.05 eV.
kgT=0.0255 eV.

5'-CGCG-(A),(T),-CGCG-3’ with n=1 and n=2. We calcu-
lated the corresponding conductances using the same param-
eters as obtained in Fig. 5 for the other molecules. Only the
on-site energies and hopping parameters were adapted ac-
cording to the Tables I and II. For the cases u=8.07 eV,
n=38.25 eV, respectively, ©=8.26 eV excellent fits for the
two new data points were obtained (see Figs. 6 and 8). How-
ever, for ©=8.18 eV, the new data points cannot be fitted
with the old parameters. This casts further doubt on the va-
lidity of this parameter set, in addition to 7 being unreason-
ably large.

In the following we examine, how sensitively the calcu-
lated conductance for the longest of the 5’-(CG),-3’
samples (m=7) depends on the parameters 7, p, and I'. The
purpose is to show that the values leading to the fits in Fig. 5
do not offer much freedom of choice, when varied individu-
ally. The chemical potential is fixed at u=8.07 eV, u
=8.18 eV, respectively, u=8.25 eV, corresponding to the fit
curves close to the upper end of the error bar for this sample.
It should be kept in mind, that a change in parameters that
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FIG. 7. (Color online) Same experimental data as in Fig. 6. For
a value of u=8.18 eV, the parameter values fitting 5'-(CG),,-3’,
'=0.003 eV, p=0.5, »=1.0 eV, do not fit the data for the chains
with AT inclusions, kg7=0.0255 eV.
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FIG. 8. (Color online) Same experimental data as in Fig. 6. For
values between u=8.25 eV (green) and u=8.26 eV (orange), our
model fits both data sets using the same parameters I'=0.003 eV,
p=0.5, »=0.05 eV, and kzg7T=0.0255 eV.

moves this conductance closer to the experimental value,
will in general lead to worse fits for the other three samples
in Fig. 5.

In Fig. 9 the calculated conductance is plotted as a func-
tion of 7 while keeping p=0.5 and I'=0.003 eV fixed on the
values, for which the fits in Fig. 5 were obtained. For u
=8.07 eV and u=8.25 eV the conductance does not depend
sensitively on 7: one would get acceptable fits for values in
a large interval between 0.01 and 0.5 eV. This is true for a
molecule that is 14 base pairs long. The optimization of the
7 value has to rely on the length dependence of the conduc-
tance. These data are crucial to narrow down the interval for
this model parameter. By contrast, for ©=8.18 eV the con-
ductance depends very sensitively on 7, allowing acceptable
fits only in a narrow interval around 1 eV and perhaps
around a second value much below 0.01 eV. Both values are
outside the range, which we regard as plausible.

In Fig. 10 the calculated conductance is plotted as a func-
tion of p while keeping 7=0.05 eV, respectively, n=1 eV
and I'=0.003 eV fixed on the values giving the fits in Fig. 5.
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FIG. 9. (Color online) The sensitivity of the calculated conduc-
tance on 7. The functions G(7) are shown for ©=8.07 eV (red),
n=8.18 eV (blue), and u=8.25 eV (green) for 5'-(CG);-3". T’
=0.003 eV and p=0.5 are fixed. The experimental value is indi-
cated by the horizontal full line, its error bar by the dashed ones.
kpT=0.0255 eV as in the experiment.
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FIG. 10. (Color online) The sensitivity of the calculated conduc-
tance on p. The functions G(p) are shown for u=8.07 eV, 7
=0.05 eV (red), u=8.18 eV, =10 eV (blue), and w=8.25 eV,
7=0.05 eV (green) for 5'-(CG);-3'. I'=0.003 eV. The experimen-
tal value is indicated by the horizontal full line, its error bar by the
dashed ones. kg7T=0.0255 eV as in the experiment.

For the chemical potentials outside the band [u=8.07 eV
and u=8.25 eV] the sensitivity is high: only for p values in
the interval between 0.3 and 0.5 one gets acceptable fits.
However, for the chemical potential within the band (u
=8.18 eV) the sensitivity is low: considering only the
sample with 14 base pairs, any p value between 0.3 and 1
would be allowed.

In Fig. 11 the calculated conductance is plotted as a func-
tion of I' while keeping p=0.5 and # fixed on the values
giving the fits in Fig. 5. For all three chemical potentials the
conductance depends sensitively on I'. Acceptable fits are
obtained between values somewhat below 0.001 and 0.003
eV, justifying our weak-coupling assumption. There may be
a second fit interval with very large values above 1 eV, which
we discard as implausible, because they would imply a cou-
pling of the molecule to the electrodes that is better than any
coupling between the base pairs within the molecule.

/// — 7\\7\\\\\\
6 \\\\ _
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<+
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FIG. 11. (Color online) The sensitivity of the calculated conduc-
tance on I'. The functions G(I') are shown for ©=8.07 eV, 7
=0.05 eV (red), u=8.18 eV, =1.0 eV (blue), and u=8.25 eV,
7=0.05 eV (green) for 5’-(CG);-3’. p=0.5. The experimental
value is indicated by the horizontal full line, its error bar by the
dashed ones. kg7=0.0255 eV as in the experiment.
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VI. CONCLUSIONS AND OUTLOOK

We have proposed a simple model in order to calculate
the conductance of DNA-double-strand molecules for any
sequence of base pairs. It is a tight-binding model with on-
site energies and charge-transfer integrals taken from the
DFT calculations in Ref. 15.

The on-site energies correspond to the energy difference
between the vacuum level and the highest occupied molecu-
lar orbital (HOMO) of the nucleobase. In the 5'-(CG).-3’
double strand they give rise to a lower band about 9.72 eV,
and an upper band about 8.18 eV below the vacuum level.
Both of them are filled, if the molecule is neutral. The energy
to create an electron-hole pair in such a molecule is on
the order of min(LUMOq,LUMOg)+8.18 eV=3-4 eV,!
where LUMO(,; denotes the energy of the lowest unoccu-
pied molecular orbital of C, respectively, G. Actually the
difference between the band centers overestimates the band
gap, but as the bandwidth is on the order of 0.05 eV, the
conclusion is still correct that thermal activation of charge
carriers at room temperature can be ruled out.

The situation changes, if the DNA molecule is brought
into contact with gold electrodes. Let us first discuss the
case, where the chemical potential of holes in the electrode is
n=8.07 eV (in other words, electronic states are filled up to
the energy —8.07 eV). At room temperature there will be
thermally activated holes in the electrode down to the
HOMOg; level. They can be injected into the molecule and
carry a current through the molecule. In this sense the elec-
trode has a similar effect as acceptors in a p-doped semicon-
ductor. This works only, if the molecule is short enough that
no localized space charges form at the contacts. In summary,
for ©=8.07 eV the molecule is a hole conductor, which re-
mains neutral when contacted.

If the chemical potential of holes in the electrode is u
=8.26 eV, we obtained fits of the experimental data of simi-
lar quality. In this case, however, the Fermi energy of the
gold electrodes lies below the uppermost filled band of the
DNA molecule. Again we assume that the molecule is short
enough that space charges extend all the way from one side
to the other. Then the upper band will be depleted, the mol-
ecule will carry a positive charge of 2N elementary charges,
where N is the number of base pairs. In the electrodes there
will be thermally activated electrons reaching up to the now
empty HOMOg level. In this case the electrodes act like
donors in an n-doped semiconductor. In summary, for u
=8.26 eV the molecule would become charged when con-
tacted, and it would be an electron conductor.

The third parameter set, for which we could find an ex-
cellent fit of the conductance of 5’-(CG),-3’ double strands,
had ©=8.18 eV, which lies within the upper occupied band
of the DNA molecule. This will lead to a depletion of the
band, which is only partial, so that no thermal activation of
charge carriers is needed. In this sense the DNA molecule
behaves like a metal, provided it is shorter than the screening
length. However, the fit requires a decoherence induced level
broadening =1 eV, which is unphysically large. Moreover,
the same parameter set is incompatible with the conductance
data for the mixed 5'-CGCG-(A),-(T),-CGCG-3" double
strands. Therefore, this scenario can be ruled out.
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Most of the experimental and the theoretical examinations
refer to hole conduction. Therefore we can conclude that the
first parameter set (©=8.07 eV, 7=0.05 eV, '=0.003 eV,
and p=0.5) is the most plausible one to describe the DNA
molecules considered.

Summarizing, we extended our phenomenological
model'>!* for describing the effect of decoherence in double
stranded DNA molecules. We could fit all of the experimen-
tal data of Refs. 2—4 without changing the microscopic en-
ergy values and by using the same parameter set of the

PHYSICAL REVIEW B 82, 125125 (2010)
model. For other experimentally investigated sequences>®
work is in progress.
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